
This draft November 20, 2009

How to run “automatic” flux calibration

Scott Schnee

1. Introduction

This document is meant to explain how to derive fluxes from recently run science projects

and add these values to the CARMA/MIRIAD catalogs.

Scott Schnee wrote these python scripts with significant help from Stuartt Corder.

There are three separate steps to accomplish this task:

1) Determine which science tracks have primary and secondary calibrators

2) Determine the fluxes of the secondary calibrators

3) Add these values to CARMA’s catalog of fluxes

2. Which tracks are interesting?

The idea here is to look through the last few science tracks and check which have primary

calibrators (Mars, Uranus or Neptune) and a bright secondary calibrator (usually a quasar).

Then we can use the known planetary model to derive the flux of the quasar, which can vary

significantly with time. Note that “science tracks” here refer to those that begin with the

“c0”, “cx” or “c1” (to plan for the future) project codes. All other tracks will be ignored,

so that we don’t waste time checking through the “ct”, “rpnt” and other irrelevant tracks.

The python script to look through the recent science tracks is in:

/home/obs/schnee/1mm flux/GetNewCalFlux.py

on the cedarflat machines at the high site.

It is run using the following example set of commands:

(at prompt) python (to get into python)

>> import GetNewCalFlux

>> GetNewCalFlux.getTracksWithFlux(addLastN=10)

The only parameter that getTracksWithFlux takes is “addLastN” and it tells the script

how many tracks to look through, in this case, the last 10 tracks. In a typical day, the



– 2 –

observers will run around 5 science tracks, so if you haven’t done this task in a couple days,

10 is a reasonable number to choose.

The output of this get appended to the end of:

/home/obs/schnee/1mm flux/FluxTable.txt

Here is an example output:

c0310.8E 230 21to2.6.mir 09JUL07 92.5098 GHz MARS 2148+069 3C454.3

c0291.1E 230Betelg.5.mir 09JUL07 227.7797 GHz MARS 3C84 3C120

The first column shows the file name (the file is in /opt/sdp/sciencedata), the second

column shows the date of the observations, the third column shows the frequency of the

observations, the fourth column shows the units of frequency (GHz), the fifth column shows

the name of the primary calibrator, and the subsequent columns has the names of the bright

quasars in the tracks.

Incidentally, to know exactly how many tracks to look through, just look at the last

track in the FluxTable.txt. Then, do an “ls” to see which files are in the science data direc-

tory:

ls -ltrd /opt/sdp/sciencedata/c0*.mir /opt/sdp/sciencedata/cx*.mir

and count back the number of files until you reach the last one in FluxTable.txt. That

number is what value you can set addLastN to when you run GetNewCalFlux.getTracksWithFlux().

3. What is the flux of the quasar?

So, now you know which tracks you are interested in, so let’s determine the fluxes of the

quasars. From the previous example we know that the file c0310.8E 230 21to2.6.mir has a

planet and some quasars, so copy it to whatever directory you want to work in. For instance,

this could work:

cd /home/obs/schnee/1mm flux

cp -rf /opt/sdp/sciencedata/c0310.8E 230 21to2.6.mir .

Now, use uvindex to determine which quasars are in the track:



– 3 –

uvindex vis=c0310.8E 230 21to2.6.mir

There are several, but the brightest is probably 3C454.3, so let’s start with that. In the

same python window as before, type:

>> GetNewCaluFlux.doFluxCal(’c0310.8E 230 21to2.6.mir’, ’MARS’, ’3C454.3’, ’3C454.3”)

The first string is the file name. The second is the name of the primary flux calibrator.

The third is the name of the secondary calibrator. The fourth is the name of your passband

calibrator. There are also several optional parameters that doFluxCal() can take, which will

be described later.

This routine will do all the calibration that’s needed to determine the flux of the sec-

ondary calibrator. You will get several screens of graphical output, in this order:

1) Flux vs time for the secondary calibrator for all antennas for the first wideband window

2) Flux vs time on each baseline separately for the first wideband window

3) Phase vs time on each baseline

4) Flux vs baseline length for the primary calibrator

You will then see the output from bootflux in the form of a table. If you liked the results

(i.e., no time ranges or antennas need to be flagged and the weather or other problems

didn’t ruin the track), then you can have doFluxCal() write some data to later be put

into the CARMA/MIRIAD official catalogue. If you trust the results, enter ’Y’ (capital

Y, without the quotes) when asked “Add values to personal files? [Y/N]”. Otherwise, type

anything other than ’Y’ (’N’ would do just fine).

The “personal files” this is referring to is “science fluxes.txt”, in the same directory that

you are running python in.

3.1. Flagging

If you want to clean the data up before adding the new flux value to the table of fluxes,

then can quit out of doFluxCal() with a “control-C” whenever you like. Then, use uvflag to

flag the bad times or antennas or whatever else you like, and run doFluxCal() again.

3.2. doFluxCal Options

There are several options when running doFluxCal(). They are, along with the defaults:

1) windowList=[1,2,3,4,5,6] - If you don’t want it to check all windows, you can telll doFlux-



– 4 –

Cal() which windows to consider. Either way, it stops after getting the flux from one window.

2) plots=”Y” - If you don’t want to see the plots, then add plots=”N” to the call to doFlux-

Cal()

3) refAnt=8 - If you want to use a different reference antenna for the phase calibration, use

this parameter

4) badRes=25.0 - This is a parameter used by bootflux. In this case, the lowest 25% of the

primary calibrator’s flux measurements are not used when fitting the planetary model to

the data. Since the signal to nosie is worse for these points, you don’t necessarily want then

included in the fit.

4. How do I add these values to the CARMA catalogue?

First, install MIRIAD on your computer, as explained on Peter’s webpage:

http://www.astro.umd.edu/˜teuben/miriad/

Now, go to where the catalogue files are kept. For instance, on my machine it is in:

˜myproject/miriad/cat/

The file with the new quasar fluxes is “FluxSource newadd.cat”. To add the new fluxes

that you just arrived to the official MIRIAD/CARMA catalogues, we use this three-step

CVS process.

1) Make sure that your copy of FluxSource newadd.cat is the most current one by typing

“cvs update FluxSource newadd.cat”

2) Add the fluxes in science fluxes.txt to the end of FluxSource newadd.cat using the text

editor of your choice.

3) Add these fluxes to the official list by typing “cvs commit -m ’science fluxes added’ Flux-

Source newadd.cat”

At this point you don’t need science flux.txt anymore, so you can delete it or rename it

or move it to another directory for future reference. You may as well delete all but the last

line of FluxTable.txt, since you won’t be going back to the old files again.

The next time there is a build, the new fluxes from FluxSource newadd.cat will be

automatically put in the CARMA/MIRIAD catalogue of fluxes.

You’re done! Whew.



– 5 –

4.1. Technicalities ...

1) For installing miriad, there is elaborate information on:

http://carma.astro.umd.edu/wiki/index.php/Miriad

In particular, one has to make sure that the necessary requirements are met:

http://carma.astro.umd.edu/wiki/index.php/Requirements

E.g. on a mac, for miriad to run it might be necessary to install a fortran compiler (see

‘HPC compiler’ in the above link)

2) In order to update miriad (or just individual files) using CVS (e.g. to use the

above ‘cvs update FluxSource newadd.cat’), it will be necessary to type ‘cvs login’ followed

by ‘enter’ (blank password). This is only necessary once and updating should work fine

thereafter.

3) Uploading the new, updated FluxSource newadd.cat via ‘cvs commit ...’ is slightly

more complicated and does not work straight out of the box. Generally, a very good descrip-

tion of the necessary steps can be found at:

http://www.astro.umd.edu/ teuben/miriad/cvs.html

Here is, however, a (slightly compressed) step by step description: First, one needs to

generate an encrypted password using the perl command on the above cvs webpage (and

don’t forget the apostrophes!). The output of this command (as well as a desired user name)

needs to go to peter teuben (teuben@astro.umd.edu) as he will create an account that will

allow to update (upload) files via CVS.

The following two lines need to be added to .cshrc:

setenv CVSROOT :pserver:USER@cvs.astro.umd.edu:/home/cvsroot

setenv CVSEDITOR emacs where USER is the respective user name.

(the same lines for the bash shell are:

export CVSROOT=:pserver:USER@cvs.astro.umd.edu:/home/cvsroot

export CVSEDITOR=emacs)

Eventually, the entry (should only be one line) in the file ’Root’ in miriad/cat/CVS/

needs to be changed: the ’anonymous’ user needs to be changed to the respective user name

(this enables committing changes via CVS only for the CAT directory, which should be

sufficient)

Then, type ’cvs login’ and provide the (above chosen) password. This has to be done

only once (the password will be stored in .cvspass in the home directory).



– 6 –

...done! from now on, ’cvs update’ should work for everything and ’cvs commit’ should

work in the CAT directory.


