z 小epdeys

Goals and Objectives

 What is the single most important thing you can do to improve your

 down-otherwise, it's just a wish." This idea applies equally well to teaching ASTRO 101 because if you don't know where you want your | The goals faculty set for | When thinking about |
| :--- | :---: |
| ASTRO 101 vary widely. Perhaps | $\begin{array}{c}\text { When } \\ \text { you want to have the most popular }\end{array}$ |
| your course goals, it is | |
| often helpful to | |$\}$

Whatever you choose as your overarching course goals, we do
suggest that you center your goals on students rather than on yourself. In other words, it is often helpful to consider how you want your students to be different as a result of taking your class. Do you want them to be able to point out constellations to their friends and family or do you want them in the universe? Or, maybe both are appropriate.
When we survey astronomy faculty about what goals are most important to them, we find that they fall into three broad categories (viz understand the big ideas in astronomy. These big ideas most often include the electromagnetic spectrum as a tool, size and scale of the cosmos, spectroscopy, and cosmology. The second common category is that students understand something about how science is done. This involves understanding and appreciating the nature of science, the scientific method as applied to astronomy, the influence of technology, weaknesses of
 book's recommendations is an impossible goal. Rather, it is our you can select a big idea or two each semester and adapt them to work in your specific teaching environment. You certainly do not need to incle class meeting-nor should you. What is most important is that you take the time needed to adequately reflect on what is working in your classroom and what needs improvement in order to move your ASTRO 101 course to a more learner-centered environment. Given this, let us begin!

[^0]talk to colleagues who have taught the course before, talk to department

 coming from will bring you much closer to meeting your course goals
because you can help them make connections between their academic
 relevant to nonscience majors are worth noting. With some effort one can

 futod sıofeu wsipuno
 Martin change when scientific or technological advances are made.
ᄀеч S! su!̣

 from yours and most of them don't learn science the way you were able to.

 you were a student and try to emulate the teaching style and seemingly

 your students, you need to find out what works for them.

What Are Your Students Expecting to Learn?

[^1]

 look through telescopes such as at a local astronomy club. Let us

 might be difficult (more on this later), they do provide guidance for

 exactly how each element of the course contributes to those goals.

Who Are Your Students?

 your course goals depends quite a bit on who your students are. In other

students at the University of Arizona. astronomy knowledge, Grace Deming and Beth Hufnagel (2001) collected
 that ASTRO 101 student demographics closely mimic the general population of undergraduates across the country. The slight majority of
 astronomy course. The distribution of ASTRO 101 student majors also
 majors outside of science, engineering, or architecture. Thirty-five percent.
 In fact, whereas only 41% of ASTRO 101 students rate themselves as
 as such in science. In short, what these students are interested in and how indeed, these students present an arduous but worthy challenge to the

 Bloom (1956) defined "understanding" at six hierarchical levels:

 ләріо-лач?

 students gain some lower-order knowledge-and that you assess this

Box 2.2 Bloom's Taxxonomy of Educational Objectives for Knowledge-Based Goals for
"Understandin' he Seasons"

		亳	鬞

How Much Math Are You Going to Include?

 One of the outstanding questions-and it is directly related to how you write your goals and objectives for ASTRO 101-is what sort of
 surprise that the appropriate mathematical level at which to teach introductory astronomy is a topic hotly debated among astronomers. ${ }^{1}$ At the risk of over simplifying the positions, one side suggests that teaching astronomy without mathematics is merely pandering to students and that
 is a quantitative science expressed most elegantly in the language of

 mathematics instruction and that a heavy emphasis on mathematics in the think they "cannot do math" into students who are completely convinced of that fact. This perspective holds that college courses for nonscience majors should avoid off-putting mathematical rigor in favor of a descriptive approach that is also designed to improve students' attitudes toward
 recognize that there is some validity to both perspectives and therefore attempt to strike a tricky balance between a course with too much math, which confuses and scares off the students, and one with too little math,
which fails to reflect the true nature of the discipline and may well sell many of the students short.

 if we use "math" in ASTRO 101, we are never really sure how to answer. To set up a dichotomy, let us first define arithmetic as the process of performing an algorithm to generate a numerical result, a process our ${ }^{1}$ Much of the material in this section has been adapted from the article "Mathematical Reasoning Over Arithmetic in Introductory Astronomy,"
Goais and Objectives
The Physics Teacher, 40(5), 268, 2002, T. F. Slater and J. P. Adams. Reprinted with
calculate the length of the semimajor axis for an asteroid given its orbital period. Other examples include asking students to compute the force of of a star at a given distance and absolute magnitude, the wavelength of a photon with a particular frequency, and a star's luminosity given its
emperature and radius. required formulae and actually seek meaning in the algebraic symbols, this is most likely not the case for the numerous math-phobic students we rend and a fair degre of coaching students can indeed leam to perform
 submit that successfully performing algorithms does little to enhance
 calculations in our courses.
In contrast to this computational-calculator view, if we define mathematics as the study of patterns and a language used to communicate introductory astronomy course. One of our goals is for students to be able to articulate relationships between variables to reason about the elationships between physical variables. We have found that, with some effort, we can ask students to do this without relying on calculators or

 same temperature when given their comparative luminosities. Other examples of the kinds of questions we focus on, as well as the kind of

 one way we introduce students to mathematical reasoning without arithmetic is to pose the following question: "What would a graph of
 astronomers' IQs versus heights?" We ask them to label the appropriate

 1! ⿺еч
 is not a bad thing. However, teaching from this perspective sometimes makes it difficult for the diverse student body in ASTRO 101 to see connections between astronomy and their personal heritage. As a discipline, astronomy has grown and benefited from a wide range of
approaches, and our courses need to reflect this in some way.

Some Questions to Ask Yourself about Being Inclusive - Do I use he and she equally in my examples? - Do I use ethnically diverse names for people in my examples? - Do I call on men and women equally in class? - Do I mostly describe the work of male astronomers? - Do I show students that science is a creative endeavor by many people? - Do I describe telescopes operated by countries other than the United States? - Do I point out the historical developments from cultures other than EuropeanAmerican? - Do I provide multiple ways for students to obtain the concepts in addition to attending lecture? - Have I made specific arrangements for physically disabled students to look through telescopes?

From a perspective of teaching that focuses on students, inclusive teaching that recognizes a diverse student body is paramount. Most faculty are aware that they should vary equally between the pronouns he and she and that a wide range of ethnic names should be used in examples. They groups and non-Western cultures should be included in courses (e.g, female astronomers' contributions to spectral classification, Mayan time keeping, Polynesian voyaging). However, work by Bianchini and her colleagues (2002) suggests that the primary reason that faculty do not emphasize educate themselves on these issues, and aggregate work desperately needs
 is a much longer one than most of us acknowledge. Authors, such as
Chapter 2

It is our contention that not only can conceptual questions require
 than whal quan torms of mathematical patterns and relationships is not easy, but it seems to be many times more rewarding that meaningless calculations. Similarly, questions specifically focusing on reasoning do in fact mirror the discipline of astronomy much more appropriately than do simple computations.

Box 2.4 Mathematical Reasoning without Arithmetic

Using a philosophy of mathematics over arithmetic has important ІОл 'san! luminosities and flux or absolute and apparent magnitudes. When
 of $10^{7} \mathrm{~km}$ is an exercise in arithmetic. However, asking students to estimate the distance to a star that has an apparent magnitude of 4 and an absolute magnitude of 5 is perfectly appropriate (the answer we are looking for is "a little less than $10 p c$ "). Other places in our course that we infuse
mathematics include historical measurements about the relative dist

Chapter 3

 :Бu!puełsjopun dof Бu!чэeә!

 :Бu!puełsjopun dof Бu!чэeә! Recent Results from Physics Recent Results from Physics

 and Astronomy Education

 and Astronomy Education Research

Over the last two decades, our scientific community has witnessed an explosive growth in the number of scientists who are adopting research in eaching and learning as their principal area of academic scholarship. In

 presentations and PER participation go from being barely visibl with
 Research-A Supplement to the American Journal of Physics to serve this community. Some of the recent results resulting from this flurry of activity have significant implications for teaching ASTRO 101; we summarize some of the most influential ones to provide the reader with a context for
the recommendations in the following chapters.

Students Can Successfully Solve Seemingly Complicated Problems With No Meaningful Understanding

Although certainly not the first to present these ideas, probably the most publicized introduction to the impact of research in PER is the story of awakening told by Harvard physics professor Eric Mazur (1996). Mazur, a respected research physicist and award-winning teacher, had always enjoyed teaching introductory physics courses, found his students could

Many members of the Astronomy Education Research (AER) community identify themselves as part of the Physics Education Research (PER) community while others have called for a new designation of a combined Physics and Astronomy
Education Research (PAER) community. For the present purposes, we use PER Education Research (PAER) community. For the present purposes, we use PER to include astronomy and space sciences.

[^0]: What is my greatest strength as a teacher?
 How do I want my students to be different as a result of
 students studying astronomy, what exactly would I like
 What would I most like to change about my ASTRO 101

[^1]: Probably the most common reason that faculty receive low course
 evaluations from students is an enormous mismatch in what faculty and and students expect ASTRO 101 to be about.

