
GSPS Productivity Series 
Coding Better

Chris Klein February 15th, 2013





Topics
1. Text editor selection and personalization
2. Pseudo code
3. Hygiene
4. # Comments ”””
5. Aesthetics
6. Runtime optimization
7. Sharing with collaborators and users
8. Eliminating redundancy



Potpourri of Text 
Editors

• TextMate, Emacs, Aquamacs, gedit, Notepad++, 
BBEdit, TextWrangler

• Or, consider an IDE for your language





Potpourri of Text 
Editors

• TextMate, Emacs, Aquamacs, gedit, Notepad++, 
BBEdit, TextWrangler

• Or, consider an IDE for your language

• Edit the preferences! (tabs ➛ spaces, UTF-8)

• Language specific color coding is awesome

• Autocompletion of parenthesis groups is awesome

• Learn keyboard shortcuts (indentation, 
commenting)

• Find/replace feature with regex parsing





Pseudo Code First!!!

• Pseudo code is the logical flow of your program 
written out in abbreviated English

• Form a coherent plan before you jump in



#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string name;
 cout << "What's your name? ";
 getline (cin, name);
 cout << "Happy Birthday" << name << "!\n";
 return 0;
}

Pseudo Code Example



Pseudo Code First!!!

• Pseudo code is the logical flow of your program 
written out in abbreviated English

• Form a coherent plan before you jump in

• Run your pseudo code by colleagues to get high 
level comments and feedback

• Often very useful in avoiding roadblocks or 
incorporating better solutions

• This is likely the deepest level your advisor will 
ever see



Hygienic Code

• Try to keep your first draft concise and logical

• Inspect periodically and clean:

• Remove accumulated hard-coded numbers, 
outdated comments, and misleading function 
names

• Do not ignore compiler and runtime warnings

• Track them down and fix your code to comply



Comment your code!

• Document your code as if someone else might 
have to take it over at any moment

• Add long header comment at top of file

• Authorship, creation date, description, usage

• Maintain a README file

• Comment changes on multi-author projects

• Explain the purpose of algorithms

• Avoid pointless comments

• Annotate as your write, don’t put it off





Documentation 
Generation

• Consider using automated documentation 
formatting and generation programs

• For Python there is Epydoc and Sphinx

• Doxygen supports nearly any language you 
would care about



In [1]: plot?





Documentation 
Generation

• Consider using automated documentation 
formatting and generation programs

• For Python there is Epydoc and Sphinx

• Doxygen supports nearly any language you 
would care about

• Likely need to modify commenting style to best 
support the formatting generator

• But, this will also likely improve your 
commenting style



Aesthetics

• Standardized style improves readability

• When/where to skip lines

• Where to write comments

• Function and variable naming conventions

• Whitespace usage

• Horizontal char limit (80 is standard)

• Very useful for multi-author projects

• Do not rewrite code just to alter the style

• This wastes time and could change behavior



Python PEP 8



Runtime Optimization

• Assess the runtimes for various components

• ipython’s timeit, or basic print/logging lines

• Always go after the bottleneck first

• Pareto principle (80% - 20% rule of thumb)

• Avoid premature optimization

• Consider packaging computational code in lower-
level language

• Balance human time investment with computation 
time savings



Your 
input 
Time

Runtime 
Savings



Before you Share

• Assume your users are stupid and lazy

• Write robust code, anticipate (user) errors

• Ensure security

• Never hard-code passwords, avoid OS sys calls

• Import only what you need

• If GUI, include contextual help and instructions

• Validate all input parameters

• Ensure malformed user input is harmless

• Provide useful error messages



Write Once, 
Use Forever

• Throughout career buildup your own commonly-
used modules and codebases

• Maintain and import these modules to save 
yourself from rewriting slightly different versions 
for each new project

• Converting coords or date-time (UT, MJD, HJD)

• Plotting

• Function fitting (gaussian), basic statistics

• Parsing text files (i.e., catalog query results)



Imported 
into 

example.py

SciPy Module
random

array

median

std

clip

append

... many more

MyStats Module

mad_clipping

gaussian_fitting

... many more


