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expect pp = cosf ~(l — 07 /2), with 6 < 1. Comparing V"’ith .the relation E=ikA, B=ik x A. More explicitly, the electric field is
1—(w/c)~2y?) ! we find that 07 = y~! <« 1. Hence this direction of prop-
agation is almost along the positive x axis in Fhe lab frarpe. Howeve.r, because
pwr =0, itis clear that g = 7 /2 and the wave is propagatmg perpendlcglarly to
the x axis in the rest frame. Thus a wave emitted in the direction pe.rpen.dlcular to
the direction of motion will be turned around to (almost) forward direction by th'e
relativistic motion of the source. Similarly, when pz, =0, R = —(v./ ¢). In this
case, a wave that has been travelling almost along the negative x axis ha_s been
turned around to travel orthogonally to the x axis. It is clear from .the dlagr—alm
that the wave will appear to propagate forward in both frames only if 8, <y .
In the two cases discussed above, the frequency of the wave changes. When
ur=(v/c), op= wry~! and the wave is still blue shifted. When 753 =.O, wp =
ywy, and the wave is red shifted. To find the angle of propagation at which there

E = Egexp[i(k - x — ot)]. (3.172)

Such a field has definite polarisation, which we now discuss.

Because Eg is a complex vector, so also is its square, which we write as
EZ = |Eo|? exp(—2i). Defining a complex vector b by Eg = be™*, we see that
b? = |Eo|? is real; if b= by + iby, where b; , are real, it follows that b; - by =0
so that the two vectors are perpendicular. Further, because the electric field is
orthogonal to the direction of propagation of the wave (which is, say, the x axis),
we can take by along the y axis and b along the z axis. Finally, noting that the
physical electric-field components are the real parts of the complex exponents,
we can write the electric field as

E,=bjcos(wt —k-x+a),

. = d solve for p. This gives 3.173
is no frequency change, we have to set w; =wpg an : . . (3.173)
0, ~ y”‘512 For 6 < 0. the wave is blue shifted. A wave propagating along 6 = 6. E;=+bsin(wf —k-x+a).

c— . ¢ . L.
appears to make the same angle with respect to the x axis in both the frames. This gives the relation

The discussion above shows that the motion of a source drags the.vs{av.e forwarfi. , )

(A corollary to this result is that a charged particle, moving felathlStlcaHY’ will _E_{ n E; _ 1 (3.174)
beam most of the radiation it emits in the forward direction.) Correspondingly, b% b% .

a charged particle moving relativistically through an isotropic bath of radiation

will see most of the radiation as hitting it in the front.
Finally, by using Eq. (3.140), we can find the energy-momentum tensor for

the plane wave that is given by

between the components of the wave, showing that the tip of the vector rotates
on an ellipse in the x—y plane as ¢ varies. Such a wave is called an elliptically
polarised wave. If b; = b,, the ellipse becomes a circle, and we have a circularly
polarised wave. If by or b, vanishes, the field is along one of the axes and is
called plane polarised.

The monochromatic wave is necessarily polarised in a manner discussed
above. However, we often come across in nature sources of radiation that are
not strictly monochromatic but contain frequencies in a narrow band Aw around
the mean frequency. In that case, the time variation of the electric field will
be of the form E =Ey(t) exp(—iwt), where Eo(t) is a slowly varying function
of time [compared to exp(—iwt)]. To determine the degree of polarisation of
such a wave, we should consider expressions that are quadratic in the electric
field; however, it is now necessary to average these expressions over the rapidly
varying part to determine the mean state of polarisation. The quadratic expres-
sions are made of E, Eg, E, E;;, or their complex conjugates. Of these, the first
one and its conjugate vary with a frequency 2w and hence will average to zero.
Therefore the polarisation properties are decided by the average of the product
EyEf= Eo Egg.

We define a quantity J,5 = (Foq E(’)‘ﬂ) that has four independent components
(because the indices take the values 1,2 in the plane perpendicular to the direction
of propagation). The trace of this quantity, J = )" J,4 = (Eq - Eg) measures the
energy density of the field and is not directly related to the polarisation. Hence
it is convenient to divide Jyg by its trace and define a polarisation tensor as

wc?
ab - T gakb, (3.170)
T 2
where W = (E? + B2)/8w = E?/47. Because the lefi-hand side of Eq. (3.170)
and k9k? are tensors, it follows that the combination (£/w) is Lorentz invariant.
(This is an interesting result, especially as it is valid for any LT — not merely
for the ones along the direction of propagation.) The momentum flux of a plane

wave is given by

c C C A C _oa
— - E)= —E*’i=—B"n, (3.171)
S—4nEXB—4nEX(nX ) 4 4

or S=cWn. The relation between momentum density and energy Qensity
S/c?=W/c is the same as that for a particle of mass zero moving with the

speed of light.

3.12.2 Polarisation of Light

The vector potential for the plane wave has the form givep in Eq. (3.@62).
Since a® =0 it follows that ¢ = 0. (For convenience we omit the subs‘cnpt k
in the notation). The corresponding electric and magnetic fields are given by
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sphere) defines a stat~e of polarisation. Where do the following lie on the Poincare sphere:
right c1r.cularly po!arlsed light, left circularly polarised light, linearly polarised light? How
does this description in terms of S; relate to the one given in the text?

pap =(Jap/J). From this definition it follows that pyg = p; o> that is, the matrix
is Hermitian with unit trace. Any such matrix can be written in the form

_1[1+8 &g
p“ﬁ"z[amz 1—53]’ G17)

where the quantities &, are called the Stokes parameters. From the definition, it
is clear that the determinant of peg, which is given by

1 1
det p = Z(1 —g2 g )= Z(l — P?), (3.176)

Exercise 3.20

Angular momentum of the wave: A circularly polarised electromagnetic wave of fre-
quency @ impinges on a charged particle. Average the motion of the charged particle
(which is assumed to be nonrelativistic) over a time T that is large compared with the
period of the wave and show that the wave transfers an amount of energy £ and angular
momentum J to the charged particle, where J = (£/w).

is positive (see Exercise 3.18). So each of the Stokes parameters vary in the
range (—1, 1).

Some general properties of the polarisation tensor can be easily ascertained.
To begin with, if the wave is completely polarised, Eo is independent of # and
the averaging has no effect on the definition of the polarisation tensor; in this
case, the polarisation tensor is expressible as the direct product of two vectors.
The necessary and sufficient condition for this is that det|p| vanishes, implying
that P = 1. On the other hand, a completely unpolarised wave will have — by
symmetry — the polarisation tensor pgg =(1/2)dup, SO that P = 0. Because of
this feature P is called the degree of polarisation.

In general, the quantity &, represents the degree of circular polarisation; &3
gives the degree of linear polarisation along the y or the z axis, with & =1
representing linear polarisation along the y axis and & = —1 giving linear po-
larisation along the z axis. The parameter & quantifies the linear polarisation
along directions that make 45° with the y axis; a value of & = 1 corresponds to
complete polarisation along ¢ = (r/4) and &§; = —1 corresponds to polarisation

along ¢ = —( /4).

3.13 Diffraction

The propagation of free electromagnetic waves is completely described by
Eq. (3.164). By reformulating this equation in a more convenient form, we can
understand a host of optical phenomena in which the wave nature of the light
plays a vital role. We begin with the first of these phenomena, which is usually
called diffraction.

Consider a monochromatic wave of frequency w. Because the vector nature
f’f the electromagnetic field is not very important in our discussion, we deal with
just one component of the vector potential. In accordance with Eq. (3.164), any
one component of the vector potential can be represented as

_ ikex —ior_ Ak

At,x) = / Fi(k)e'* e ’w. (3.178)
In the study of optical phenomena we are often concerned with waves that are
propggating, by and large, in some given direction, which can be taken as the
positive z axis. Mathematically, this means that the function F;(k) is significantly
nonzero only for wave vectors with k, > 0 and (ky, k,) < k. Further, because the
wave has a definite frequency w, the magnitude of the wave vector is fixed at the
value w/c. It follows that one of the components of the wave vector, say k,, can
be expressed in terms of the other three. Therefore the function F, hz:s’ the

structure
Fi(k,, k1) = 2n f(ky)ép <kz — @ /c? - ki) , (3.179)

‘where the subscr.ipt ‘J_ denotes the components of the vector in the transverse
x—y plane. Substituting this expression into Eq. (3.178) we find that

Exercise 3.18 ,
Properties of the polarisation tensor: Prove that the polarisation tensor must have posi-

tive determinant. Verify the various results stated above explicitly.

Exercise 3.19
Stokes parameters: Another way of characterising the polarisation of a wave is by using

certain variables defined along the following lines. Consider an elliptically polarised
light for which the major axis of the ellipse is inclined at an angle ¥ with the arbitrarily
chosen x axis. Let the amplitude of the electric field along the major and the minor axes
of the ellipse be E, and E, with x = tan""(E,/Ep). We now define the quantities S;

(i =0, ...,3) and three variables (U, V, W) by the relations Alt; 2, %) =a(z, Xl)e_i“”

o [ A7k : '
— it L ik -x 1z
e 2n ) Fkp)e™ L exp <? [w? — czk?L). (3.180)

Because {:he time variation of a monochromatic wave is always exp(—iwt), we
1gnore this factor and concentrate on the spatial dependence of the amplitude

So=1=E}+E}, S = Q= Sycos2y cos2y,

. . (3.177)
S, =U = Spcos2x sin2y, 8=V = §psin2y.

(1) Show that the parameters S; are notall independent. (2) Consider a sphere of radius So
in the space with Cartesian axes (S1, Sz, S3). Every point on the sphere (called a Poincaré




